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a b s t r a c t

This paper deals with the numerical resolution of the Vlasov–Poisson system in a nearly
quasineutral regime by Particle-In-Cell (PIC) methods. In this regime, Classical PIC methods
are subject to stability constraints on the time and space steps related to the small Debye
length and large plasma frequency. Here, we propose an ‘‘Asymptotic-Preserving” PIC
scheme which is not subjected to these limitations. Additionally, when the plasma period
and Debye length are small compared to the time and space steps, this method provides a
consistent PIC discretization of the quasineutral Vlasov equation. We perform several one-
dimensional numerical experiments which provide a solid validation of the method and its
underlying concepts, and compare the method with Classical PIC and Direct-Implicit
methods.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The impact of plasmas and more generally, charged-particle fluids on the human environment is constantly increasing,
due to their importance in such domains as industrial processes, energy, lighting, air or water cleaning, etc. Because of
the large variety of physical situations and the complex multiscale character of most plasma phenomena, the numerical sim-
ulation of plasmas still represents an important challenge for the scientific community. Roughly speaking, according to the
physical context, two large classes of mathematical models can be used: fluid models and kinetic ones. This paper is con-
cerned with collisionless plasmas for which a kinetic description is required.

The basic kinetic model for plasma simulations is the Vlasov equation, coupled with the electromagnetic field equations.
The Vlasov equation is posed on a 6-dimensional phase-space (3 space dimensions and 3 velocity dimensions) plus time. For
this reason, particle methods have been preferred to grid-based (Eulerian) methods, as they allow a coarse, yet sufficiently
precise, description of the phase-space. In Particle-In-Cell methods, the coupling between the particles and the field is imple-
mented through the introduction of a space grid. Charge and current densities are assigned from the particles to the grid.
Then, the fields are computed using finite difference methods on the grid and then, interpolated back to the positions of
the particles. We refer to the two celebrated books [3,27] for an overview of these methods. Recently, grid-based Eulerian
simulations have received a great deal attention [1,6,16–18,38,40] but particle methods are still the number-one method
. All rights reserved.
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used for the numerical simulation of plasma kinetic models. The convergence of PIC methods has been mathematically
investigated in [9,19].

One of the very basic but very important problem in plasma simulations is the handling of quasineutrality. Indeed, the
electrostatic force tends to restore the local charge neutrality of the plasma. The Debye length and plasma periods [7,30]
set the typical space and time scales at which this restoring force acts. The Debye length measures the typical scale of charge
unbalances in the plasma whereas the electron plasma period characterizes the oscillation period of the particles when a
departure to quasineutrality occurs. Usually, both these space and time scales are very short compared to the typical scales
of the phenomena under investigation. In such situation, the plasma is locally quasineutral. These very short time scales
make numerical simulations very time consuming. Indeed, standard explicit PIC methods require a stability condition which
guarantees that the space and time steps are smaller than the Debye length and electron plasma period.

Lots of efforts have been devoted to the search for implicit PIC schemes which would be free of such constraints. There are
basically two classes of implicit PIC methods: the direct implicit method [8,31] and the implicit moment method [33,34]. In
the direct implicit method, an implicit algorithm for the advancement of the particles is introduced. However, since a full
implicit resolution of the particle positions and of the fields is virtually impossible, a two-step predictor–corrector approx-
imation is practically implemented. In the implicit moment method, a prediction of the value of the fields at the next time-
step is done through the use of the moment equations. Numerous extensions of these methods can be found in the literature,
especially concerning the coupling with the Maxwell equations [4,25,32,35,36,41].

Recently, new classes of methods for singular perturbation problems have emerged. These are the so-called Asymptotic-
Preserving (AP) methods. Let (Sk) be a singularly perturbed system and (S0) the limit system when k ? 0. Here, we give a
definition of an AP method.

Definition 1. An Asymptotic-Preserving scheme for (Sk) in the limit k ? 0 is a scheme which is consistent with (Sk) when the
numerical parameters (e.g. Dx, Dt) resolve the scales associated with the small parameter k and which is consistent with (S0)
when k ? 0 with Dt, Dx staying of order one.

The concept of AP method originates from the work of Shi Jin for multiscale kinetic equations [28]. In our case, (Sk) is the
Vlasov–Poisson system and (S0) is the quasineutral Vlasov system.

The concept of AP method is particularly interesting when k is not uniformly small. For instance, at a plasma edge, the
parameter k, which depends on the local value of the plasma density, can vary by several orders of magnitude from k� 1
to k = O(1). In this case, the original problem (Sk) must be solved in the region where k = O(1) and the limit problem (S0),
where k� 1. With classical method, this situation requires a model coupling methodology to connect the two models. How-
ever, model coupling methods involve a certain level of arbitrariness, such as the location of the coupling interface or the
expression of the coupling terms. Their implementation can also be quite complex with the need to adapt the mesh to
the geometry of the interface. The AP method allows the computation of the two regions k = O(1) and k� 1 with the same
and unique method. The AP scheme automatically shifts from the (Sk) model to the (S0) model wherever k becomes small,
without any need to reduce the time and space steps. This results in a considerably more robust numerical code. We shall
see an example of this situation with the simulation of the expansion of an ion slab at Section 4.4.

In this paper, we propose an Asymptotic-Preserving PIC method (or PICAP method) for the Vlasov–Poisson equation in the
quasineutral limit. Previous works on AP methods for the quasineutral limit have been devoted to the Euler–Poisson problem
[10,12,14] and to Eulerian schemes for the Vlasov–Poisson problem [2]. The quasineutral limit in plasmas has been theoret-
ically investigated in [5,11,15,20,21,24,37].

The present work is a follow-up of a previous work [13], where a first variant of the method (the PICAP-1 method) was
presented and tested on a one-species model of a perturbed Maxwellian plasma. In the present work, we introduce a new,
simpler variant of this method (the PICAP-2 method) and considerably broaden the list of test problems. These are,

1. a steady-state simulation to quantify the dissipation of the scheme,
2. one and two species perturbations of a Maxwellian plasma with a particular consideration of the Landau damping test

problem,
3. the Bump-on-Tail instability,
4. the expansion of an ion slab, following [22,23].

We will also compare our method to various variants of the Direct-Implicit method.
The method relies on the remark that the equation allowing the computation of the potential in the quasineutral Vlasov

problem is very different from the Poisson equation. Indeed, the former is an elliptic equation found from the divergence free
condition on the current, a consequence of the quasineutrality. To build an AP scheme, it is necessary to find a unified frame-
work for both the Poisson equation and the quasineutral potential equation. This is done by reformulating the Poisson equa-
tion into a strictly equivalent equation which explicitly contains the quasineutral potential equation as a particular case
when k = 0. This equation is differential in both time and space, and specifically second order in time. An implicit discreti-
zation of this equation is combined with a semi-implicit discretization of the particle trajectories and yields an Asymptotic-
Preserving scheme for the Vlasov–Poisson problem in the quasineutral limit. Since the reformulation of the Poisson equation
leads to a fully equivalent problem, there is no other approximation involved in our method than purely numerical ones (i.e.



5632 P. Degond et al. / Journal of Computational Physics 229 (2010) 5630–5652
associated to the time and space discretization). To our knowledge, previous implicit methods such as the direct implicit or
the moment implicit ones (see references above) have not been analyzed in view of this Asymptotic Preservation property,
and we will show that they are not consistent with the quasineutral limit problem when k ? 0.

This paper is organized as follows. In Section 2, we present the two-fluid Vlasov–Poisson system model and its quasineu-
tral limit and we derive the reformulated Poisson equation. From this reformulation, in Section 3, we build up the Asymp-
totic-Preserving Particle-In-Cell (PICAP) method. Section 4 is devoted to the discussion of the numerical results: comparisons
between the classical and Asymptotic-Preserving schemes are provided in a one-dimensional geometry. We consider the
various test problems as listed above. The results confirm that the AP strategy remains stable and provides the expected re-
sults even if the time and space discretizations do not resolve the Debye length and plasma periods. This shows that the
method can powerfully deal with stiff problems when the stiffness results from the quasineutrality constraint. By contrast,
the Direct-Implicit method show lower accuracy in stiff problems such as the expansion of an ion slab problem.

2. The Vlasov–Poisson system and its quasineutral limit

In this section, we present the two-fluid Vlasov–Poisson system and its quasineutral limit.

2.1. The Vlasov–Poisson system

We are interested in the kinetic description of a two-fluid plasma constituted of electrons and one ion species. Then, ions
and electrons are described by their distribution function respectively denoted by fi(x,v, t) and fe(x,v, t), where the position
and velocity variables x and v are such that ðx;vÞ 2 X� Rd, with X � Rd and d = 1, 2, or 3 and t P 0 is the time. The two-fluid
Vlasov–Poisson system is written:
@tfi þ v � rxfi �
e

mi
rx/ � rv fi ¼ 0; ð2:1Þ

@tfe þ v � rxfe þ
e

me
rx/ � rv fe ¼ 0; ð2:2Þ
where we denote by e > 0 the positive elementary charge, by mi,e the ion and electron masses and by / the electric potential.
/ is given by the Poisson equation:
�D/ ¼ e
e0
ðni � neÞ; ð2:3Þ
where e0 is the vacuum permittivity, and ni,e are the ion and electron densities, given by
niðx; tÞ ¼
Z

Rd
fiðx;v ; tÞdv; neðx; tÞ ¼

Z
Rd

feðx;v ; tÞdv :
The two important physical scales for this model are the Debye length kD and the electron plasma frequency xp given by:
kD ¼
e0kBT0

e2n0

� �1=2

; xp ¼
n0e2

e0me

� �1=2

;

where kB is the Boltzmann constant, n0 is the plasma density scale (n0 v ni v ne), T0 is the plasma temperature scale. We
note that an ion plasma frequency can be defined (replacing me by mi). However, this parameter is smaller than xp because
of the large ion to electron mass ratio. The electron plasma period is defined by sp = 1/xp.

The situation where both the Debye length and electron plasma period are very small compared with the typical macro-
scopic length and time scales is called the quasineutral regime because the local electric charge is very small (of order k2k2

D

where k is the local inverse gradient length of the electric potential). Simultaneously, the electron plasma period becomes
very small as well, so that when local charge unbalances occur (at the scale of the Debye length), very high plasma frequency
oscillations are triggered.

In order to study the quasineutral model, we introduce the following scaling of the Vlasov–Poisson problem. The scaled
variables are given by
�x ¼ x
x0
; �v ¼ v

v0
; �t ¼ v0

x0
t; �ni;e ¼

ni;e

n0
; �f i;e ¼

v0

n0
fi;e; �/ ¼ e/

kBT0
; ð2:4Þ
where x0 > 0 is the typical length of the problem, and v0 2 R is the thermal ion velocity scale given by v0 = (kBT0/mi)1/2. Insert-
ing this scaling into Eqs. (2.1)–(2.3) and omitting the bars, we get the following scaled two-fluid Vlasov–Poisson model
@tfi þ v � rxfi �rx/ � rv fi ¼ 0; ð2:5Þ

@tfe þ v � rxfe þ
1
e
rx/ � rv fe ¼ 0; ð2:6Þ

� k2D/ ¼ ðni � neÞ; ni;e ¼
Z

fi;e dv : ð2:7Þ
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where k = kD/L is the scaled Debye length and e = me/mi is the electron to ion mass ratio. Note that the scaled plasma fre-
quency is given by x ¼ xpx0=v0 ¼ 1=ð

ffiffiffi
e
p

kÞ. In the following, we investigate the limit k ? 0 which leads to the quasineutral
limit.

In the forthcoming test cases, we will also be interested in the one-species case, considering only electrons while ions are
supposed static (due to their very large mass). The scaled one-species Vlasov–Poisson problem is written:
@tf þ v � rxf þrx/ � rv f ¼ 0; ð2:8Þ

� k2D/ ¼ ðn0 � nÞ; n ¼
Z

f dv; ð2:9Þ
where n0 is supposed to be a uniform ion background density.

2.2. Reformulation of the Poisson equation

The quasineutral limit consists in letting k ? 0 in the scaled Vlasov–Poisson system (2.5)–(2.7). Obviously, when k = 0, we
lose the possibility of using the Poisson equation (2.7) to compute the potential / since (2.7) reduces to the quasineutrality
constraint ni = ne. For this reason, we introduce a reformulation of the problem which provides a more convenient approach
to the quasineutral limit.

To this aim, we take the velocity moments of Eqs. (2.5) and (2.6) and obtain the mass and momentum conservation
equations:
@tni þr � ðnuÞi ¼ 0; ð2:10Þ
@tðnuÞi þr � Si ¼ �nir/; ð2:11Þ
@tne þr � ðnuÞe ¼ 0; ð2:12Þ

@tðnuÞe þr � Se ¼
ne

e
r/; ð2:13Þ
where (nu)i,e, the ion and electron momenta and Si,e, the (specific) momentum fluxes are given by
ðnuÞi;e ¼
Z

Rd
fi;eðx;v ; tÞv dv; Si;e ¼

Z
Rd

fi;eðx;v ; tÞv � v dv ;
and the symbol � denotes the tensor product. Taking the differences of (2.10) and (2.12) on the one hand, and of (2.11) and
(2.13) on the other hand, we get the continuity and current equations respectively:
@tðni � neÞ þ r � ððnuÞi � ðnuÞeÞ ¼ 0: ð2:14Þ

@tððnuÞi � ðnuÞeÞ þ r � ðSi � SeÞ ¼ � ni þ
ne

e

� �
r/: ð2:15Þ
Taking the time derivative again of (2.14) and the divergence of (2.15) and subtracting the resulting two equations leads
to:
@2
t ðni � neÞ � r2 : ðSi � SeÞ ¼ r � ni þ

ne

e

� �
r/

� �
; ð2:16Þ
wherer2 denotes the tensor of second order derivatives and ‘‘:” the contracted product of two tensors. After substitution of
the Poisson equation (2.7), this equation yields:
�k2@2
t D/�r2 : ðSi � SeÞ ¼ r � ni þ

ne

e

� �
r/

� �
: ð2:17Þ
Collecting / into the left-hand side, we find the so-called reformulated Poisson equation:
�r � ni þ
ne

e
þ k2@2

t

� �
r/

� �
¼ r2 : ðSi � SeÞ: ð2:18Þ
These computations show that, if the triple (fe, fi,/) solves the Vlasov–Poisson problem (2.5)–(2.7), it solves the ‘‘reformu-
lated Vlasov–Poisson problem” consisting of the Vlasov equations (2.5), (2.6) and the reformulated Poisson equation (2.18).
Conversely, if the triple (fe, fi,/) solves the reformulated Vlasov–Poisson problem, we find, going backwards in the previous
computations, that / satisfies:
@2
t ð�k2D/� ðni � neÞÞ ¼ 0:
Therefore, if the initial data /0 :¼/jt=0 and /00 :¼ ð@t/Þjt¼0 satisfy the two Poisson equations at the initial time:
� k2D/0 ¼ ðni � neÞ0; ð2:19Þ
� k2D/00 ¼ ðni � neÞ00 ¼ �r � ððnuÞi � ðnuÞeÞ0; ð2:20Þ
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(with obvious notations), then the Poisson equation (2.7) is satisfied at all times. Since Eq. (2.18) is second order in time, it
requires the knowledge of the two initial conditions /0 and /00. Therefore, it is always possible to impose (2.19) and (2.20). A
linearized stability analysis would in principle be needed to guarantee that, when (2.19) and (2.20) are not satisfied (for in-
stance, in the discrete case, because of numerical errors), unstable linear modes are not going to be excited. However, line-
arized stability analysis depends on the state about which the problem is linearized and can only offer definite answers in
model cases. The numerical experiments so far have not shown any instability problem of this kind (see Section 4).

We can summarize this discussion by saying that the Vlasov–Poisson system (2.5)–(2.7) is equivalent to the following
‘‘reformulated Vlasov–Poisson system”:
@tfi þ v � rxfi �rx/ � rv fi ¼ 0; ð2:21Þ

@tfe þ v � rxfe þ
1
e
rx/ � rv fe ¼ 0; ð2:22Þ

� r � ni þ
ne

e
þ k2@2

t

� �
r/

� �
¼ r2 : ðSi � SeÞ; ð2:23Þ
with / satisfying the initial conditions (2.19) and (2.20).
The reformulated Poisson equation has been previously proposed in the framework of fluid models in [10,12,14], and in

[2,13] for plasma kinetic models.
2.3. The quasineutral limit

The quasineutral limit of the Vlasov–Poisson system has been investigated theoretically in [5,20,21] and extensively used
in physical studies. It is almost impossible to cite all the relevant physical literature. We just mention [26,29,39] as examples.

The reformulation (2.21)–(2.23) allows to investigate the quasineutral limit k ? 0 in a straightforward way. Indeed, let-
ting k ? 0 in (2.23), (2.19), (2.20) directly provides the following equation for the quasineutral potential /:
�r � ni þ
ne

e

� �
r/

� �
¼ r2 : ðSi � SeÞ; ð2:24Þ
together with the two constraints
ðni � neÞ0 ¼ 0; ð2:25Þ
ðni � neÞ00 ¼ �r � ððnuÞi � ðnuÞeÞ0 ¼ 0; ð2:26Þ
From these equations and with the aid of (2.16), we immediately deduce that ni = ne at all times, which shows that quasi-
neutrality holds.

Therefore, the limit k ? 0 of the Vlasov–Poisson system (2.5)–(2.7), or equivalently, of its reformulation (2.21)–(2.23)
leads to the following quasi-neutral Vlasov system:
@tfi þ v � rxfi �rx/ � rv fi ¼ 0; ð2:27Þ

@tfe þ v � rxfe þ
1
e
rx/ � rv fe ¼ 0; ð2:28Þ

� r � ni þ
ne

e

� �
r/

� �
¼ r2 : ðSi � SeÞ; ð2:29Þ
together with the initial conditions satisfying (2.25) and (2.26).
We see that, although the original and reformulated Vlasov–Poisson systems are equivalent, they are not equally well-

suited in the quasineutral limit. Indeed, the quasineutral potential equation (2.29) appears as the formal limit k ? 0 of
the reformulated Poisson equation (2.23) but not of the original Poisson equation (2.7). The asymptotics does not preserve
the form of the original Poisson equation while it does preserve the form of the reformulated one. Therefore, the construction
of Asymptotic-Preserving schemes must be based on the use of the reformulated Poisson equation. For this reason, our
Asymptotic-Preserving PIC method relies on the numerical approximation of the reformulated Vlasov–Poisson problem
(2.21)–(2.23) rather than that of the original Vlasov–Poisson problem (2.5)–(2.7). We now describe the method in detail
in the next section.
3. Asymptotic-Preserving PIC method (PICAP method)

3.1. PIC methods: general methodology

Particle-in-Cell (PIC) methods are widely used in the plasma physics community. We refer to the text books [3,27] for a
detailed exposition (see also the bibliography in Section 1). The particle method consists in discretizing fi,e into a sum of delta
measures located at positions ((Xi,e)j(t), (Vi,e)j(t)) in phase-space. This is written:
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fi;eðx;v ; tÞ � ðfi;eÞNðx;v ; tÞ :¼
XN

j¼1

ðxi;eÞjd x� ðXi;eÞjðtÞ
� �

d v � ðVi;eÞjðtÞ
� �

; ð3:1Þ
where N is the number of particles and (xi,e)j is a weight which must be conveniently defined at initialization [3,27]. The jth
particle coordinates ((Xi,e)j(t), (Vi,e)j(t)) obey Newton’s equations:
ð _XiÞj ¼ ðViÞj; ð _ViÞj ¼ �rx/hððXiÞjðtÞ; tÞ; ð3:2Þ

ð _XeÞj ¼ ðVeÞj; ð _VeÞj ¼
1
e
rx/hððXeÞjðtÞ; tÞ; ð3:3Þ
These equations are discretized in time (see discussion below). The potential /h is a space approximation of /. In the PIC
method, this approximation is computed at each time-step by solving the Poisson equation (2.7) on a fixed grid of space step
h (e.g. using a finite difference method). An assignment procedure allows to build grid values of the particle densities (ni,e)h

from the knowledge of the particle locations and weights. These values serve as data for the numerical resolution of the Pois-
son equation. Once an approximation /h on the grid has been obtained, an interpolation procedure allows to reconstruct the
values of the fieldrx/h(Xj, t) at the locations of the particles. These assignment-interpolation procedures are classical and are
not modified in the present work (see again [3,27]). The only modification resulting from the replacement of the original
Poisson equation (2.7) by the reformulated one (2.23) is the need to assign other quantities than the densities, namely
the values of the pressure tensors Si,e. However, the assignment procedure for these quantities is the same as for the densities
and does not require a specific discussion.

The major issue in making the PIC procedure Asymptotic-Preserving, besides using the reformulated Poisson equation in-
stead of the original one, is the time discretization. In the following subsections, we successively describe the ‘‘classical” or
‘‘standard” PIC method, the PICAP method, and for the sake of comparison, we also recall the Direct-Implicit PIC method.

3.2. Classical PIC method

The Classical PIC method uses a ‘‘leap-frog” scheme where positions are defined at integer values of the time-step
Xm

j � XjðmDtÞ, while velocities are defined at half-integer values Vmþ1=2
j � Vjððmþ 1=2ÞDtÞ. In the Classical PIC method, the

integration of (3.2) and (3.3) is done as follows:
ðXi;eÞmþ1
j � ðXi;eÞmj

Dt
¼ ðVi;eÞmþ1=2

j ; ð3:4Þ

ðViÞmþ3=2
j � ðViÞmþ1=2

j

Dt
¼ �rx/

mþ1ððXiÞmþ1
j Þ; ð3:5Þ

ðVeÞmþ3=2
j � ðVeÞmþ1=2

j

Dt
¼ 1

e
rx/

mþ1ððXeÞmþ1
j Þ; ð3:6Þ
where we omit the index h for the grid-approximation of the potential for simplicity. Advancing the velocities with (3.5) and
(3.6) supposes that Poisson’s equation (2.7) is solved with a charge density at the right-hand side of (2.7) computed from
particle positions at time tm+1, which is possible since these are known from (3.4). However, it is well known and widely
documented in the literature [3,27] that this method suffers from a stability constraint of the form Dt, h 6 Ck where the con-
stant C is of order of unity. We shall refer to this scheme as the Classical PIC scheme. There have been numerous attempts to
provide more stable time-stepping strategies (see the bibliography in Section 1) which have proved to be quite efficient in
practical cases. However, it is not clear if these methods are consistent with the quasineutral Vlasov model (2.27)–(2.29) in
the limit k ? 0. The PICAP methods which we are going to discuss now do have this property, as we will show below.

3.3. PICAP method

In the proposed Asymptotic-Preserving strategy, positions and velocities are both defined at integer time-steps for sim-
plicity. The time-stepping method for the position equation is fully implicit while that of the velocity equation is semi-im-
plicit: the electric field is taken implicitly but the particle positions explicitly. More precisely, the particle time advancement
scheme is as follows:
ðXi;eÞmþ1
j � ðXi;eÞmj

Dt
¼ ðVi;eÞmþ1

j ; ð3:7Þ

ðViÞmþ1
j � ðViÞmj

Dt
¼ �rx/

mþ1ððXiÞmj Þ; ð3:8Þ

ðVeÞmþ1
j � ðVeÞmj

Dt
¼ 1

e
rx/

mþ1ððXeÞmj Þ: ð3:9Þ
The implicit evaluation of the potential /m+1 is obtained via an implicit time-discretization of the reformulated Poisson
equation (2.23).
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The starting point for our implicit time-discretization of (2.23) is the following scheme:
�rx � ðDtÞ2 nm
i þ

nm
e

e

� �
rx/

mþ1 þ k2ðrx/
mþ1 � 2rx/

m þrx/
m�1Þ

� �
¼ ðDtÞ2r2

x : ðSm
i � Sm

e Þ: ð3:10Þ
This scheme is clearly Asymptotic-Preserving in the sense of the definition stated in Section 1. Indeed, in the limit k ? 0,
we find
�rx � nm
i þ

nm
e

e

� �
rx/

mþ1
� �

¼ r2
x : ðSm

i � Sm
e Þ: ð3:11Þ
which is a consistent discretization of the quasineutral potential equation (2.29).
However, the presence of the Laplacians of the potential at the previous time-steps /m and /m�1 at the left-hand side of

(3.10) is somehow inconvenient because it introduces extra computational cost. Therefore, it is more natural to use the Pois-
son equation (2.7) to replace these terms by the charge densities at the corresponding time-steps.

To this aim, two strategies have been proposed. The first method, already proposed in [13] and called ‘‘PICAP-1”, consists
in simply performing this replacement. It leads to:
�r � ðDtÞ2 nm
i þ

nm
e

e

� �
þ k2

� �
r/mþ1

� �
¼ ðDtÞ2r2 : ðSm

i � Sm
e Þ þ 2ðnm

i � nm
e Þ � ðnm�1

i � nm�1
e Þ: ð3:12Þ
Eq. (3.12) allows to compute /m+1 from known quantities at time tm and tm�1.
Another, original method is found by using a time-discrete version of the continuity Eq. (2.14) to replace the term

ðnm
i � nm

e Þ � ðnm�1
i � nm�1

e Þ at the right-hand side of (3.12) by �rððnuÞmi � ðnuÞme Þ. This leads to the so-called ‘‘PICAP-2”
method:
�r � ðDtÞ2 nm
i þ

nm
e

e

� �
þ k2

� �
r/mþ1

� �
¼ ðDtÞ2r2 : ðSm

i � Sm
e Þ þ ðnm

i � nm
e Þ � DtðrððnuÞmi � ðnuÞme ÞÞ; ð3:13Þ
which allows to compute /m+1 from known quantities at time tm alone. This equation can be viewed as a discretization of the
first order differential system (2.14) and (2.15). Indeed, an implicit discretization of this system is given by:
ðnmþ1
i � nmþ1

e Þ � ðnm
i � nm

e Þ
Dt

þr � ðnuÞmþ1
i � ðnuÞmþ1

e Þ
� �

¼ 0; ð3:14Þ

ððnuÞmþ1
i � ðnuÞmþ1

e ÞÞ � ðnuÞmi � ðnuÞme Þ
� �

Dt
þr � Sm

i � Sm
e

� �
¼ � nm

i þ
nm

e

e

� �
r/mþ1: ð3:15Þ
Inserting (3.15) in (3.14) leads to:
ðnmþ1
i � nmþ1

e Þ � ðnm
i � nm

e Þ
Dt

þr � ðnuÞmi � ðnuÞme Þ
� �

� ðDtÞr2 : Sm
i � Sm

e

� �
� ðDtÞr � nm

i þ
nm

e

e

� �
r/mþ1

� �
¼ 0: ð3:16Þ
Then replacing ðnmþ1
i � nmþ1

e Þ by �k2D/m+1 leads to (3.13).
The advantage of the PICAP-2 method is that it does not require an auxiliary scheme to compute the first iterate at time t1,

while PICAP-1 does. The computation of the first iterate requires the use of the Classical PIC scheme. But if k is very small, the
use of the Classical PIC scheme over a single time-step can be enough to trigger an instability of the whole method. There-
fore, the use of the PICAP-2 method is preferable.

In spite of the presence of the extra terms at the right-hand sides of (3.12) and (3.13) the PICAP-1 and PICAP-2 methods
are Asymptotic-Preserving. Indeed, at each time-step, both differ from the AP method (3.10) by terms which are proportional
to ni � ne and which consequently are of order O(k2). Therefore, these additional terms vanish in the limit k ? 0 and the PI-
CAP-1 and PICAP-2 methods are Asymptotic-Preserving as well. The numerical experiments below provide an experimental
evidence of this statement.

The space-discretization of the reformulated Poisson equations (3.12) or (3.13) uses standard finite-difference methods,
and is omitted.

3.4. Direct-Implicit method

Here, for the sake of completeness, we describe the Direct-Implicit method of [31,32] that we have implemented for our
comparisons. To describe the Direct-Implicit method, we need to introduce ðEe;iÞmj the electric field applied at time tm to the
jth particle, indices ‘e’ or ‘i’ referring to electrons or ions. The method is then as follows: given the electric field ðEe;iÞmj at time
tm, temporary particle positions and velocities are computed with the ‘‘leap-frog” scheme,
ðeV eÞ
mþ1

2
j ¼ ðVeÞ

m�1
2

j � Dt
1
e
ðð1� bÞðEeÞmj � bre/mþ1ððXeÞmj ÞÞ; ð3:17Þ

ðeV iÞ
mþ1

2
j ¼ ðViÞ

m�1
2

j þ Dtðð1� bÞðEeÞmj � bre/mþ1ððXiÞmj ÞÞ; ð3:18Þ

ðeXi;eÞmþ1
j ¼ ðXi;eÞmj þ DtðeV i;eÞ

mþ1
2

j ; ð3:19Þ



Table 1
Definition of the PIC schemes.

Classical PICAP-1 Eqs. (3.4)–(3.6) explicit
PICAP-1 Asymptotic Preserving Pic, Eqs. (3.7)–(3.9), (3.12) and /�1 = 0 implicit
PICAP-2 Asymptotic Preserving Pic, Eqs. (3.7)–(3.9), (3.13) implicit
C-DI (b = 1/2) Classical Direct-Implicit, Eqs. (3.17)–(3.21) with b = 1/2 explicit–implicit
M-DI (b = 1/2) Modified Direct-Implicit, Eqs. (3.17)–(3.21) with b = 1/2 and /0 = 0 explicit–implicit
M-DI (b = 1) Modified Direct-Implicit, Eqs. (3.17)–(3.21) with b = 1 and /0 = 0 implicit
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where b is a parameter which controls the degree of implicitness (0 6 b 6 1) and e/mþ1 is a temporary potential which will be
defined below. Then, temporary densities enmþ1

i;e are assigned from the particle positions ðeX i;eÞmþ1
j and the electric field at time

tm+1 is given by the following implicit correction to the explicit electric field:
ðEi;eÞmþ1
j ¼ ð1� bÞðEi;eÞmj � br/mþ1ððeXi;eÞmþ1

j Þ; ð3:20Þ
where /m+1 is a correction to e/mþ1 and is a solution to the equation:
�r � ðDtÞ2bðenmþ1
i þ

enmþ1
e

e
Þ þ k2

� �
r/mþ1

� �
¼ enmþ1

i � enmþ1
e �r � ðDtÞ2b enmþ1

i þ
enmþ1

e

e

� �
re/mþ1

� �
: ð3:21Þ
Finally, the particle positions and velocities are updated with the classical ‘‘leap-frog scheme” from the positions ðXi;eÞmj
and velocities ðVi;eÞmj at time tm, in the partly implicit electric field ðEi;eÞmþ1

j .
The temporary potential e/mþ1 can be chosen in various ways. In the following numerical simulations, it is chosen equal to

0. An other possible choice is e/mþ1 ¼ /m. Simulations using the latter have been carried out in the present work but did not
give rise to significant improvements compared to the former (and even sometimes provided mildly unstable results). For
this reason, only simulation results using e/mþ1 ¼ 0 will be shown.

In the following, we will consider the explicit–implicit Direct-Implicit method with b = 1/2: it will be called the Classical
Direct-Implicit method and denoted C-DI (b = 1/2). The first iterate of the scheme requires the computation of the initial po-
tential via the classical Poisson equation (2.7) (to provide both the velocities V1=2

j � VjðDt=2Þ and the initial explicit electric
field). As shown in the numerical simulations, instabilities can then be generated in under-resolved case. That is why we
consider two modified Direct-Implicit schemes: Modified DI (b = 1/2) and Modified DI (b = 1) denote Direct-Implicit schemes
where the initial potential is zero. Modified DI (b = 1/2) is an explicit–implicit Direct-Implicit scheme while Modified DI
(b = 1) is a fully implicit Direct-Implicit scheme.

We note that (3.21) is consistent with the Poisson equation when Dt ? 0 for fixed k. On the other hand, when k ? 0 with
fixed Dt, the resulting equation is
�r � ðDtÞ2b enmþ1
i þ

enmþ1
e

e

� �
r/mþ1

� �
¼ enmþ1

i � enmþ1
e �r � ðDtÞ2b enmþ1

i þ
enmþ1

e

e

� �
re/mþ1

� �
:

When Dt ? 0, this scheme leads to
enmþ1
i � enmþ1

e ¼ 0; ð3:22Þ
which does not provide any equation for /m+1. Additionally, since enmþ1
i and enmþ1

e do not depend on /m+1, there is no way /m+1

can be adjusted in such a way that the constraint (3.22) can be matched. In other words, the scheme (3.21) is not Asymp-
totic-Preserving in the sense of the definition stated in Section 1.

We refer to [31,32] for a more thorough presentation of the Direct-Implicit schemes and to Table 1 for a summary of the
definition of the different schemes.
4. Numerical results

In this section we show numerical results in one space dimension for the Vlasov–Poisson system. We simulate four test-
cases and we compare the results obtained with the Classical PIC, PICAP-1 and PICAP-2 schemes. Simulations with the Di-
rect-Implicit schemes, C-DI (b = 1/2), M-DI (b = 1/2) and M-DI (b = 1), are also performed in most of the test-cases.

The first test-case consists in a steady state, the second test-case is a bump-on-tail instability, the third test-case is a per-
turbation of a Maxwellian plasma and the fourth test-case is a plasma expansion in vacuum.

4.1. Steady state test-case

The first test case is dedicated to the study of the damping resulting from the implicitness of the PICAP schemes in the
case of a steady state and they are compared to the Direct-Implicit schemes. We initialize the Vlasov–Poisson equation with
the following steady state: the ion are supposed motionless and the distribution function of electrons is uniform,
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f0ðx;vÞ ¼ ð2pÞ�
1
2 expð�v2=2Þ; n0 ¼ 1; ð4:1Þ
on the domain (0,1). We consider periodic boundary conditions for the Vlasov equation and homogeneous Dirichlet bound-
ary conditions for the Poisson equation. The Debye length is chosen equal to k = 10�3 and thus the plasma period is
x�1 = 10�3.

In Fig. 1, we consider a resolved case: Dx = 10�4 < k. The time-step is chosen such as it satisfies the CFL conditions:
vmaxDt = 0.9Dx, where vmax is the maximal electron velocity at each time-step. As a consequence, time scales are also re-
solved: xDt 6 1. We use 100 particles per cell. Fig. 1 shows the total energy as function of time. For the exact solution of
the Vlasov–Poisson equation (one-species case), the total energy E is given by
E ¼ k2

2

Z
j@x/j2dxþ 1

2

Z
f jvj2 dxdv ; ð4:2Þ
and is constant in time. The Classical PIC and the Classical Direct-Implicit schemes preserve the total energy while the PICAP-
1, PICAP-2 and M-DI (b = 1) schemes damp it since they are fully implicit. The damping rates related to these schemes are
reported in Table 2, Minimizing this damping effect by combining explicit and implicit computations is the goal of the vast
literature about Direct-Implicit schemes [31,32]. PICAP schemes seem more dissipative but further studies about second or-
der time-stepping strategies may improve this feature.

Fig. 2 presents results for the under-resolved case Dx = 10�1 > k, where k = 10�3 is unchanged. For Classical PIC and Clas-
sical DI (b = 1/2) schemes, we use a uniform time-step Dt = 15x�1, since the CFL conditions would be too restrictive due to
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the large particle velocities induced by the instability. For the other schemes, the time-step is given by the CFL condition
vmaxDt = 0.9Dx. Fig. 2(right) shows that time is under-resolved for all the schemes. We consider now 105 particles per cell
in order to have the same total number of particles as in the resolved case. Total energies are plotted in Fig. 2(left) for
the different schemes (Classical PIC, PICAP-1, PICAP-2, Classical DI (b = 1/2), Modified DI (b = 1/2) and Modified DI (b = 1)).
We note that the Classical PIC and Classical DI (b = 1/2) methods are unstable: unphysically large electrical energies are
reached after the first time step. The other schemes (PICAP-1, PICAP-2, Modified DI (b = 1/2), Modified DI (b = 1)) damp
the energy. The damping rate is approximately of the same order and is about �0.01%. Since the number of particles per cell
is larger than previously and the time-step bigger, the dissipation due to the particle-grid assignment-interpolation proce-
dure is lower.

4.2. Periodic perturbation of a quasineutral Maxwellian plasma

In this section, we investigate the dynamics of a small perturbation of a Maxwellian plasma (see also [13]). We perform
the simulation on the domain (0,1) with periodic boundary conditions for the Vlasov system and with homogeneous Dirich-
let boundary conditions for the Poisson equation.

We consider successively the one-species case (i.e. system (2.8) and (2.9)) and the two-species case (i.e. system (2.5)–
(2.7)). In [13], only the one-species case was considered. In the two-species case, we choose a realistic mass ratio
e = 10�4. The PICAP schemes seem robust even in the case of realistic electron to ion mass ratios. However, ideally, an Asymp-
totic-Preserving scheme for both the limits k ? 0 and e ? 0 should be sought. This problem is under current investigation.

4.2.1. Periodic perturbation: one species case
For this case, we develop the PICAP-1 and PICAP-2 schemes for system (2.8) and (2.9). We select k = 10�4 which means

that the scaled plasma frequency has the value x ¼ 1
k ¼ 104 and we use 100 particles per cell. We initialize the Vlasov–Pois-

son equation with
Fig. 3.
functio
t = 0.2 =
f0 ¼ p�1=2ð1þ d sinðjpxÞÞ expð�v2Þ; n0 ¼ 1: ð4:3Þ
where d = 10�2 is the perturbation amplitude and j = 2220. The value of j is chosen such that j 	 k�1 to ensure that the
wavelength of the density perturbation is of the same order as the Debye length. In this case, the phase velocity of the wave
(which is nearly xp/j in physical units) is of the same order as the thermal velocity vth (which in our dimensionless units, is
unity). This situation corresponds to a strong particle-wave coupling [7,30], since the thermal velocity roughly coincides
with the location of the steepest slope of the velocity distribution function.

In Fig. 3, we present results obtained with the Classical PIC, PICAP-1 and PICAP-2 schemes when Dx = k = 10�4. The time
step Dt satisfies both CFL conditions vmaxDt 6 Dx and xDt 6 1. In these conditions, the fast space and time scales (respec-
tively the Debye length and plasma period) are both resolved. Fig. 3(left) gives the electric potential as a function of position
at an instant t = 10x�1 = 10�3. The electric potential is almost identical with the three schemes. The electric potential as a
function of position is shown in Fig. 3(right) after a large number of plasma periods (t = 2000x�1 = 0.2). We can see that
the amplitude of the plasma waves is of the same order of magnitude as previously when using the Classical PIC scheme,
while it has been strongly damped out with the PICAP-1 and PICAP-2 methods. This shows that the AP strategy damps
out the energy of the plasma waves and allows to capture phenomena which occur on longer time scales. In other words,
the AP discretization of the Vlasov–Poisson problem damps out the plasma waves. On the other hand, waves that exist in
quasineutral conditions (such as ion-acoustic or Alfven waves) should not be altered by the AP procedure. Indeed, the sim-
ulations of the ion slab expansion (see Section 4.4) show that the model gives a correct account of the expansion, which
propagates at about the ions acoustic wave-speed.

Fig. 4 now shows the results obtained when the fast space and time scales are both under-resolved, i.e. the space step is
larger than the Debye length Dx > k and the time-step is larger that the plasma period Dt > x�1. We choose Dx = 10�2 while
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k = 10�4 is unchanged. Meanwhile, the total number of particles is kept unchanged. For both PICAP-1 and PICAP-2 schemes,
we use a time-step determined by the CFL conditions: vmaxDt 6Dx. In Fig. 6, we plot xDt as a function of time. We see that
this constraint still allows Dt of the order of 30 times the plasma period x�1. Simultaneously, we use a uniform time-step for
the Classical PIC scheme, with Dt = 30x�1. We cannot use the CFL condition because the instability generates very large par-
ticle velocities and enforcing the CFL condition would generate very small time-steps.

Fig. 4 depicts the electric potential as a function of space, at time t = 0.2. The left picture shows a result using the classical
PIC scheme. The instability of the scheme is clearly visible since the amplitude of the potential oscillations are now of the
order of ten times those of the initial potential (see Fig. 3 for instance). With the PICAP-1 or PICAP-2 schemes, these ampli-
tudes are now very small showing that the schemes are stable and have damped out plasma waves, as in the resolved case.

Fig. 5 displays the total energy E (in log scale) as a function of time for the different schemes in the resolved and under-
resolved situations. Fig. 5(left) shows the resolved case. We notice that the total energy for the Classical PIC scheme decays
slowly after a more rapid initial transient. By contrast, the total energy of both PICAP-1 and PICAP-2 schemes decays more
steadily. In Fig. 5(right), the under-resolved case is considered. With the Classical PIC scheme, the total energy is unstable
and reaches large and totally unrealistic values after a very rapid initial transient. With the AP schemes, they are both stable
and damped to zero. We note that the PICAP-2 scheme seems to exhibit a slower energy decay than the PICAP-1 scheme
which has been initially proposed in [13]. Paradoxically, the energy decay of the PICAP-1 and PICAP-2 seems far less pro-
nounced in the under-resolved case than in the resolved case, probably because the number of assignment-interpolation
procedures per unit time has been reduced, leading to a lower diffusive scheme.

In [13], the energy damping has been attributed to the noisy coefficients of the reformulated Poisson equation (3.12) (be-
cause the densities and the tensors S have to be computed from the particles and because additionally, a second order space
derivative of S is needed as a source term in this equation). It has been noticed that, if high frequencies are cut off in order to
eliminate the noise, the energy damping can be significantly reduced. The application of filtering techniques, or more gen-
erally, of noise reduction techniques to these new PICAP schemes will be the subject of future studies.

When the fast space scale is under-resolved but the fast time scale is resolved, the Classical PIC scheme is still unstable.
We have performed simulations with Dx = 10�2, k = 10�4 and Dt = 0.9x�1. The results are very similar to those obtained in
the fully (time and space) under-resolved case (and for this reason, the results are not displayed). This is to be compared to
the behaviour of classical schemes for the fluid models (i.e. the Euler–Poisson problem in the quasineutral limit) [12], where
it has been observed that the results are stable as long as the fast time scale is resolved, even if the fast space scale is under-
resolved. It looks as if the kinetic problem was more unstable than the fluid one, since as soon as one of the fast time or space
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scale is under-resolved, the scheme becomes unstable. By contrast, both the PICAP-1 and PICAP-2 schemes are stable. The
results are very similar to those of the fully resolved case and are not represented.

4.2.2. Periodic perturbation: two species case
In this section, we consider the two species problem (2.5)–(2.7) and choose the following parameters:
e ¼ 10�4; k ¼ 10�4 x ¼ 1
k
ffiffiffi
e
p ¼ 106

� �
:

Again, we put 100 ions and 100 electrons in each cell. We initialize this test-case with
fe0 ¼ ep�1=2ð1þ d sinðjpxÞÞ expð�ev2Þ;
fi0 ¼ p�1=2ð1þ d sinðjpxÞÞ expð�v2Þ
with d = 10�2 and j = 2220.
We successively consider the case where the Debye length and electron plasma period are both resolved (Dx = k,

Dt < x�1, Dt satisfying the CFL condition vmaxDt 6Dx), and where none of the Debye length and plasma period are resolved.
In the latter case, the time-step is chosen to satisfy the CFL condition: Dt = 0.9Dx/vmax. Fig. 8 shows the evolution of the time-
step as a function of time. We notice that the time-step reaches values which are of the order of 25 times the plasma period.
For the standard PIC scheme, the time-step is kept fixed at this value for the same reason as explained above. We observe
that the PICAP methods damp plasma waves in a similar way as in the one-species cases, and that they provide stable com-
putations in the under-resolved case, while, in the latter case, the Classical PIC is unstable. We omit the corresponding pic-
tures as they are similar to Figs. 3 and 4. We only display the total energy as a function of time.

In the two-species case, the total energy of the Vlasov–Poisson problem is given by
E ¼ k2

2

Z
j@x/j2 dxþ 1

2

Z
fijv j2 dxdv þ e

2

Z
fejv j2 dxdv; ð4:4Þ
and is constant in time. The total energy (in log scales) as a function of time is displayed in Fig. 7, in the resolved case (left)
and under-resolved one (right). The conclusions are the same as in the one-species case: the energy dissipation of the Clas-
sical PIC scheme is lower than that of the two AP schemes in the resolved case. However, in the under-resolved case, the
Classical PIC scheme exhibits a severe instability while the two AP schemes are still stable. Additionally, the energy dissipa-
tions of the AP schemes in the under-resolved case are slightly less pronounced than in the resolved case. In this two-species
case, the two AP schemes seem to behave similarly as regards the energy dissipation properties and the lower energy dis-
sipation of PICAP-2 compared with PICAP-1 is less apparent.

These results confirm that, in a situation where standard PIC methods would be unstable, the PICAP schemes remain sta-
ble and dissipate the electric energy of the plasma waves.

4.2.3. Linear Landau damping test-case
In this section, the PICAP-1 and PICAP-2 schemes are compared to both the Direct-Implicit scheme [31,32] and the Eule-

rian solver used in [2]. The frequency j of the density perturbation is of order one. The target of such a test case is to measure
the accuracy of the numerical schemes for capturing nonlinear Landau damping, which is a phenomenon occurring on the
time scales of the plasma oscillations. So as to perform comparisons, we initialize the Vlasov–Poisson equation as in [2]:
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f0 ¼ ð2pÞ�
1
2ð1þ d sinðjxÞÞ expð�v2=2Þ; n0 ¼ 1; ð4:5Þ
on the interval (0,2p/j). The perturbation amplitude is taken equal to d = 10�2 and j = 1. We take Dx = 2 � 10�2 and we con-
sider 104 particles per cell (in average). Thus, the total number of particles is of the same order as in the previous test case.

Fig. 9 shows results for a resolved case k = 1 > Dx = 2 � 10�2. The time-step is chosen such that the CFL condition
vmaxDt = 0.9Dx is satisfied. As a consequence, time scales are also resolved: xDt 6 1. Fig. 9(left) depicts the norm of the
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electric field (in log scale) as a function of time obtained with the Classical PIC, PICAP-1, PICAP-2 and classical Direct-Implicit
schemes. In Fig. 9(right), xDt as function of time is plotted. The four schemes give identical results. The measured slope is
about 0.64, which has the same order as the theoretical one (see Ref. [2, Fig. 3]). However, due to the noise which is inherent
to particles simulations, this value is not as precise as for semi-Lagrangian simulations. For the same reason, the damping is
stopped at t ’ 4x�1 instead of going on.

In Fig. 10, we present the results for an under-resolved case: k = 10�4 < Dx and x�1 = 10�4 < Dt. The space step
Dx = 2 � 10�2 is unchanged. For the Classical PIC and the Classical DI (b = 1/2) schemes, we use a uniform time-step
Dt = 30x�1. For the other schemes, the time-step is determined by the CFL conditions: vmaxDt = 0.9Dx. Fig. 10 shows the
norm of the electric field (in log scale) as a function of time for the different schemes. As in the previous test case, the Clas-
sical PIC is unstable. The Direct-Implicit scheme seems also unstable but the stable results given by the Modified DI (b = 1/2)
and Modified DI (b = 1) schemes prove that it is essentially due to the computation of the first time-step. Finally, the Mod-
ified DI (b = 1/2) and the Modified DI (b = 1) schemes provide similar results to those of the PICAP-1 and PICAP-2 schemes.
These results are not comparable to those obtained in [2]. This is because plasma oscillations are not resolved at all in this
situation and none of the tested schemes is able to provide a reliable estimate of the damping rate. Both Direct-Implicit and
PICAP methods provide an over-damping of the plasma waves. In Fig. 10(right), we plot xDt as a function of time. We see
that the damping of the wave by the PICAP-1, the PICAP-2, the Modified DI (b = 1/2) and the modified DI (b = 1) schemes
results in increased time-steps.

4.3. Bump-on-tail test-case

In this section, we compare the AP methods to the Classical PIC scheme and the Direct-Implicit method in the case of a
bump-on-tail instability, which is a form of the two-stream instabilities. The results must be also compared with those ob-
tained with an Eulerian code in [2]. We initialize the Vlasov–Poisson equation with
Fig. 10.
functio
functio
be com
f0ðx; vÞ ¼ f1ðvÞð1þ d cosðjxÞÞ; ð4:6Þ
where the function f1 is given by:
f1ðvÞ ¼ C expð�v2=2Þ þ a expð�ðv � vdÞ2=2v2
t Þ

� �
; ð4:7Þ
where C is a renormalization constant. Periodic boundary conditions for the Vlasov–Poisson system and homogeneous
Dirichlet boundary conditions for the Poisson equations are considered. The numerical parameters are a = 0.04, j = 0.3,
vd = 4.5, vt = 0.5 and a = 2/9, and are those chosen in [2]. The space domain is (0,20p) and we consider periodic boundary
conditions.

Fig. 11(left) shows results for a very resolved case, where k = 1 and Dx = 2.10�3. We consider 10 particles per cell (in aver-
age). We consider also a CFL condition like Dt = 0.9Dx/vmax, which consequently ensures the resolution of time scales. Elec-
trostatic energy is plotted in Fig. 11(left) for Classical PIC, PICAP-1, PICAP-2 and Classical Direct-Implicit schemes. It should
be compared with Fig. 10 of [2]. The various schemes are in very good agreement one with each other up to time 100x�1.
Besides, up to time 50x�1, they are also in good agreement with the result obtained in [2]. After time 50x�1, the results are
altered by the damping due to the numerical noise of PIC methods. However, all the schemes capture the dynamics well,
despite the small number of particles per cell.

We consider now the following under-resolved case: Dx = 3 while k = 10�1. We consider 6.104 particles per cell (in aver-
age). For the Classical PIC and the Classical DI (b = 1/2) schemes, we enforce the condition Dt = 4x�1 to be sure that time is
under-resolved. For the PICAP-1, the PICAP-2, the Modified DI (b = 1/2) and the Modified DI (b = 1) schemes, the time-step is
computed from the CFL conditions vmaxD t = 0.9Dx. Fig. 12(right) shows that time scales are under-resolved for all these
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schemes since Dt ’ 4x�1 for all the schemes. In Fig. 12(left), electrostatic energy is plotted for Classical PIC, PICAP-1, PICAP-
2, Classical Direct-Implicit, Modified DI (b = 1/2) and Modified DI (b = 1) schemes: while Classical PIC exhibits a large insta-
bility before damping, Classical DI (b = 1/2) and Modified DI (b = 1/2) rapidly damp the energy but not as much as PICAP-1
and PICAP-2. Fig. 13 displays the electron velocity distribution function for the different schemes at time t = 0, 200, 300 and
2000x�1. Classical PIC does not give coherent results: all the particles have large velocities. Classical DI (b = 1/2) strongly
heats up the system since the number of particles with small velocities decreases strongly. The Modified DI (b = 1/2) scheme
does not seem unstable. However, among the last four schemes, it gives rise to the larger number of particles with fast veloc-
ities (see at v = 6). On the contrary, the Modified DI (b = 1) scheme seems to produce the system with the largest number of
particles with small velocities (see at v = 2). The PICAP methods provide intermediate results. All these results are similar to
those presented in Fig. 14 of [2]. Moreover, the results obtained with the PICAP-1, PICAP-2, Classical Direct-Implicit, Modified
DI (b = 1/2) and Modified DI (b = 1) schemes are in concordance with the resolved case considered in Fig. 12 of [2].

So as to compare the loss of energy due to the numerical schemes, Fig. 11(right) shows the total energy with the resolved
Classical PIC scheme (with k = 10�1, Dx = 5 � 10�2 and 103 particles per cell) and with the under-resolved other schemes
(with k = 10�1, Dx = 3 and 6 � 104 particles per cell). As in the steady state test case, we can observe that fully implicit
schemes (PICAP-1,PICAP-2 and Modified DI (b = 1)) damp energy approximately at the same level and more rapidly than
the explicit–implicit schemes, i.e. the Classical DI (b = 1/2) and the Modified DI (b = 1/2) schemes. Comparisons with
Fig. 15 of [2] show that the damping due to the interpolation-assignment procedure of PIC methods seems to be more impor-
tant than the damping due to implicitness.
4.4. One-dimensional plasma expansion test-case

4.4.1. Setting of the problem
We consider a one-dimensional plasma expansion problem which is described in [22,23]. This is a two-species problem

where the ions initially occupy a slab of thickness L, while the electrons are initialized by a Maxwell–Boltzmann equilibrium
with a self-consistent potential. The test problem consists in observing the expansion of the ion slab.
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The initial electron temperature is 1000 times higher than the initial ion temperature. The simulation box is [0,A] and the
ions are initialized in [0,L/2] with L/2� A (for reasons of symmetry, only half of the domain is simulated and a symmetry
axis is set at x = 0). The mass ratio is e = 1/1836. We scale the energies according to the electron thermal energy, using
�/ ¼ e/=ðkBTe0Þ, v0 = kBTe0 /mi in (2.4). The scaled Vlasov–Poisson system is the same as before: (2.5)–(2.7). The boundary con-
ditions for the potential are
/ð0Þ ¼ 0; @x/ðAÞ ¼ 0: ð4:8Þ
To enforce that x = 0 is an axis of symmetry, we assume specular reflection for the distribution function (i.e. particles are
reinjected with reversed velocities), while the right boundary is a purely absorbing one, i.e. particles exiting the domain at
x = A are free to leave it while no particle is reinjected.

The initial electron density is defined by the Boltzmann relation
ne0 ¼ n0 exp /0; ð4:9Þ
while the initial ion density is such that
ni0 ¼
n0 for 0 6 x 6 L=2;
0 for L=2 6 x 6 A:

	
ð4:10Þ
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The initial potential /0 is obtained by solving the nonlinear Poisson equation (2.7) associated with the initial electron and
ion densities (4.9) and (4.10) and with the boundary conditions (4.8). The distribution functions are initialized by
Fig. 14
(right)
compar

Fig. 15.
scale (l
time t ¼
fe0 ¼ ne0MeðvÞ; f i0ðx; vÞ ¼ ni0MiðvÞ; ð4:11Þ
where the electron and ion Maxwellians are given by
MeðvÞ ¼ ðe=ð2pÞÞ1=2 expð�ev2=2Þ; MiðvÞ ¼ ð2pgÞ�1=2 expð�v2=ð2gÞÞ; ð4:12Þ
and g = Ti0/Te0 is the ion to electron temperature ratio. In this test problem, g = 10�3, and L/2 = 20k.
In [23], the numerical parameters are chosen as follows. The simulation domain length is A = 3 � 104k. The space step is

Dx = 0.2k and there are 4 � 105 particles per cell. This makes a total number of 6 � 1010 particles, which exceeds our own
computer resources. For this reason, we use a smaller simulation domain A = 103k with the same Dx = 0.2k and 2000 particles
per cell (1000 electrons and 1000 ions), which amounts to about 5 � 106 particles in total.

4.4.2. Simulation 1: time and space resolved case (reference case)
We first use the same time-step as [23] i.e. Dt = 0.05x�1, where x ¼ 1=ð

ffiffiffi
e
p

kÞ is the electron plasma frequency and we
view the results at time T ¼ 30x�1

i where xi ¼
ffiffiffi
e
p

x is the ion plasma frequency. These time and space steps obviously re-
solve the plasma period and Debye length.

The electric potential and electric field are shown in Fig. 14 and should be compared with Fig. 9(a) and (b) of [23]. We
observe that the boundary of the ion slab is located at 	140k as in [23]. This shows that the AP method gives a correct ac-
count of ion-acoustic waves, since the expansion roughly takes place at the speed of this wave. This correct account is pre-
served in the under-resolved case as shown in Sections 4.4.3 and 4.4.4. This observation suggests that the AP discretization
does not modify waves that are present in quasineutral conditions, such as ion-acoustic or Alfven waves, even in under-re-
solved conditions.

We note that the values reached by the two electric field peaks, close to the center of the foil (E 	 0.01E0) and at the
boundary of the ion slab (E 	 0.03E0), measured in units of E0 = (n0kBT/e0)1/2 are in very good agreement with [23]. The
ion density distribution is shown in Fig. 15(left) and the electron velocity distribution, in Fig. 15(right). They must be
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compared respectively with Fig. 10(a) and Fig. 3(a) of [23]. Note that we display the space-integrated velocity distribution
function rather than the distribution function at x = 0 as in [23] because otherwise, there are too few particles to make a sig-
nificant statistics. The ion and electron mean velocities are shown in Fig. 16 and should be compared with Fig. 10(b) of [23].
The ion density and velocity show an excellent agreement with [23]. The electron velocity distribution also shows similar
features as in [23]: a flat top, then a steep gradient between 0.25 and 0.5 in units of 2v2

0 and then an abrupt change to a flatter
gradient around 0.5. The electron mean velocities are quite noisy due to the lack of significant statistics in the region beyond
the boundary of the ion slab. This large noise level is also apparent in [23].
4.4.3. Simulation 2: time and space under-resolved case
We now turn to fully under-resolved (in both time and space) simulations. To this aim, the space-step is set to the value

Dx = 4k, and the time-step, to the value Dt = 3x�1. We present the electric potential and electric field in Fig. 18. We observe
that the Classical PIC method gives nonsense: the order of magnitude of the potential and of the electric field have nothing to
do with the true solution. The PICAP methods on the other hand give fairly good agreements with the reference solution. We
still observe the same qualitative features as in the resolved case, with a peak electric field located at the boundary of the ion
slab, and a smaller but distinct peak close to the center of the foil. On the other hand, the ion expansion is slowed down: the
boundary of the ion slab is located at x 	 100k in both PICAP-1 and PICAP-2 methods respectively as can be seen on the ion
density profiles in Fig. 17(left). This reduction of the ion expansion can again be attributed to the lower precision of the
method due to the large time and space steps (Dt is 60 times bigger than in the reference case, while Dx is 20t times bigger).
All the Direct-Implicit schemes give less accurate results than the PICAP-1 and PICAP-2 schemes since they suffer from a lack
of consistency in the quasi-neutral regime. The ‘‘best” Direct-Implicit schemes, the C-DI (b = 1/2) and the M-DI (b = 1/2), lo-
cate the boundary of the ion slab at x 	 75k, while the fully implicit M-DI (b = 1) locates this boundary at x 	 35k. We may
expect an even better agreement of the PICAP schemes by the use of second order time discretizations. This point will be
studied in future work.

Despite the slight degradation of accuracy, the PICAP methods provide fairly good results even in highly under-resolved
situations, while the Classical PIC method fails completely, and the Direct-Implicit methods give poorer results. The use of
much larger time and space steps leads to a considerable speed-up of the numerical simulation over fully-resolved PIC sim-
ulations which makes the PICAP methods attractive compromises between accuracy and computational efficiency.
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The ion density as a function of position (in log scale) and the electron velocity distribution as a function of v2=ð2v2
0Þ ob-

tained in these under-resolved conditions are shown in Fig. 17(left and right respectively). Again, apart from the slower
expansion of the slab, the ion density profiles given by the PICAP methods are quite good, with a sharp decrease at the boar-
der of the slab, while the Classical PIC method gives an almost uniform ion density, indicating that the ion slab has totally
dissolved. We note that the PICAP-2 method seems slightly more accurate than the PICAP-1 method, as the ion expansion is
faster with the former than with the latter. Both PICAP methods give more accurate results than the Direct-Implicit schemes.
A close look at the electron velocity distribution shows that the PICAP methods better reproduce the distribution of low en-
ergy electrons ðv2=2v2

0 6 0:5Þ than the Direct-Implicit methods, while the latter provide a better approximation of the large
energy electrons ðv2=2v2

0 > 0:5Þ. It seems that a better account of the low energy electrons is preferable to provide a good
description of the overall dynamics. The ion and electron mean velocities are shown in Fig. 19. With the PICAP methods, the
general trend of the ion mean velocity is preserved. The maximal ion velocity (attained at the boundary of the ion slab) is
smaller than in the reference case, which is again consistent with the slower expansion of the ion slab. With the Direct-Im-
plicit methods, the ion velocity is scaled down further in accordance with the slower expansion velocity.
4.4.4. Simulation 3: time and space under-resolved with small number of particles
These simulations show that the PICAP methods are able to produce fairly accurate results at much lower cost than the

Classical PIC method and with a better accuracy than the Direct-Implicit method. To emphasize this point, we now show
simulation results using much less particles. Specifically, using the same under-resolved time and space steps, we now ini-
tialize the simulation with 1000 particles per mesh for each species, like in the reference simulation. Since the mesh size is
20 times bigger than in the reference simulation, there are 20 times less particles, namely a total of about 2.5 � 105 particles.
The results are displayed in Figs. 20–22. The electric potential and electric field show almost no difference with the previous
simulation using 20 times more particles (see Fig. 18). The boundary of the ion slab as appearing on the density profiles in
Fig. 21(left), is located at the same position as in Fig. 17 (left). This indicates that the speed of the ion expansion is not af-
fected by the number of particles. Because of the smaller number of particles, the statistics of the electron distribution func-
tion as appearing in Fig. 21(right) degrades at large velocities. However, for low velocities, the results are similar to the
previous case (see Fig. 17(right)). The ion and electron mean velocities (Fig. 22) are also very similar to Fig. 19. The use of
much larger time and space steps, together with a much smaller number of particles, results in considerably faster simula-
tions. Of course, the price to pay is a slight degradation of accuracy. However, it appears that the PICAP method provides an
interesting compromise between accuracy and computational efficiency and this accuracy is also sharper than the Direc-Im-
plicit methods.
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Fig. 20. Plasma expansion test case. Simulation 3: space and time under-resolved case: Dx = 4k and Dt = 3x�1 and small number of particles (1000 particles
per mesh and per species). Electric potential (left) and electric field (right) as a function of position with PICAP-1, PICAP-2, Classical DI (b = 1/2), Modified DI
(b = 1/2) and Modified DI (b = 1) schemes at time t ¼ 30x�1
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of position, with Classical PIC (top), PICAP-1, PICAP-2, Classical DI (b = 1/2), Modified DI (b = 1/2) and Modified DI (b = 1) schemes (bottom), at time
t ¼ 30x�1
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Modified DI (b = 1) schemes, at time t ¼ 30x�1
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Table 3
CPU speed-up per particle. Note that a smaller number of particles can be used in conjunction with the PICAP method, thereby increasing the CPU speed-up (see
text).

Simulation 1 Classical PIC fully
resolved

Simulation 3 or 4 PICAP fully under-
resolved

Speed-up per particle PICAP/
Classical PIC

CPU (s) per particle, per k, per
x�1

2.88 � 10�7 6.0 � 10�9 48
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4.4.5. Computational speed-up and improvements
To illustrate this statement, we now compare the CPU time necessary to achieve the same final time-step, using the time

and space resolved Classical PIC method on the one hand (Simulation 1), and the time and space under-resolved PICAP meth-
od on the other hand (Simulations 2 and 3). Table 3 displays the results. We normalize the CPU time to units of length and
time equal to k and x�1 respectively and to one particle. Usually, the CPU time is normalized by the time and length steps
but since the goal of the PICAP method is to use large time and space steps, we rather normalize the CPU time to the physical
reference units.

The computational speed-up which can be obtained by the use of the PICAP method in the present situation is about 50
per particle. This means that Simulation 2, which uses the same number of particles as Simulation 1, is 50 times faster, but
Simulation 3, which uses 20 times less particles, is about 1000 times faster. Given the extremely good qualitative agreement,
this huge computationally speed-up can be extremely interesting for 2D and 3D simulations. Additionally, since the lower
number of particles does not affect significantly the quality of the results, Simulation 3 also represents a considerable saving
in terms of memory storage, which is also extremely interesting for higher dimensional simulations.

The degradation of accuracy related to the use of large time and space steps and small particle numbers seems to manifest
itself in a slowing down of the time scales (such as that of the expansion of the ion slab). In general, in such circumstances,
the method tends to overdamp the dynamics. However, the orders of magnitude are correct and the accuracy is significantly
increased compared to Direct-Implicit methods. These tests also showed that there is no significant difference between the
two PICAP methods, apart from a slightly lower dissipation by the PICAP-2 method. Additionally, the PICAP-2 method being a
one-step time advancement method, it is easier to implement and should be preferred over PICAP-1.

In order to further increase the computational speed-up, one needs to bypass the limitation given by the CFL condition,
namely that any given particle should not move more than one mesh size per time-step. We have tried to loosen the CFL
condition, but this rapidly leads to unacceptable errors. The reason is that the PICAP method is not asymptotic preserving
with respect to the particle masses. Since the electron mass is the smallest, the CFL constraint is more restrictive for the elec-
trons. Therefore, it would be extremely useful to design an Asymptotic-Preserving PIC method associated with the small
electron to ion mass ratio. Such a method is not available yet. A less efficient but probably easier method would be to
use a local time-step and to take advantage of the less severe CFL constraint in the regions where the particle velocities
are small. The use of a local space-step would also allow large cells in the regions of smooth gradients. In these regions,
the CFL constraint could be locally loosened. Finally, the accuracy of the method could be increased by designing a sec-
ond-order time integration method for the particle trajectories. All these research directions show that there exists a large
potential of improvements for this method. These ideas will be implemented in future work.

5. Conclusion

In this paper, we have presented a novel PIC method for the Vlasov–Poisson equation. The method is Asymptotic Pre-
serving in the quasineutral limit, i.e. it is consistent with the quasineutral Vlasov equation in the limit of vanishing
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scaled Debye length. To validate this method, we have investigated several test problems: the first one consists of a stea-
dy state simulation; the second one considered a perturbation of a quasi neutral plasma with a particular consideration
of the Landau damping; the third one is a bump-on-tail instability; the fourth one concerns the expansion of an ion slab
in vacuum. All tests have confirmed that the method is stable even if the time and space steps are well above the values
set by the plasma period and Debye length, while the standard PIC method is unstable in these conditions. The Direct-
Implicit methods well capture plasma oscillations, but PICAP methods provide more consistent results for stiff test-cases
such as the plasma expansion one. Despite the loss of accuracy associated with the use of large time and space steps,
the method produces fairly accurate results and provides an attractive compromise between accuracy and computational
efficiency. In the future, additional improvements of the method will be sought, such as for instance, removing the CFL
constraint on the time-step or finding second-order accurate time discretizations of the particle trajectories. The method
will also be extended to electromagnetic plasma simulations through the coupling of the Vlasov equations to the
Maxwell equations.
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